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ABSTRACT 

In analysis of the removal of offshore jackets an important 
failure mode is buckling. In current practice, a buckling check 
involves manual determination of the buckling lengths of each 
frame member. It is estimated that 5 to 10% of the man-hours 
in structural analysis of removal projects is spend on checking 
and correcting buckling lengths. Fortunately, an alternative 
method is available that does not require determining buckling 
lengths. In this paper it is shown how this method can be 
derived from the NORSOK standard for tubular steel frame 
structures. The method is demonstrated in a removal analysis of 
an offshore jacket. It is concluded that this method can be 
successfully applied. 
 
1     INTRODUCTION 
Members of frame structures have many imperfections, such as 
a slight curvature or twist, welding stresses, rolling stresses, 
eccentric joints, eccentric loading and deviations in cross-
section dimensions. All these imperfections make that members 
and structures buckle at smaller loads than predicted by models 
that do not include these imperfections. This has been studied 
in experimental programs in Europe and the USA which led to 
the well known buckling curves in the Eurocode and the AISC 
LRFD (Fig. 1 and 2) [1]. 
 
When applying the buckling curves the buckling lengths or 
effective length factors need to be determined. The codes 
provide comprehensive rules for determining the buckling 
lengths, however, not all situations are properly covered. As an 
example, Figure 3a shows part of a jacket leg that is modelled 
with 5 elements of 2 m length each. The subdivision into 5 
elements is necessary to model the presence of a light tubular 
member parallel to the leg. One of the leg elements is checked 
for buckling. According to the code equations the adjacent 
members are modelled as rotational springs. The resulting 

buckling length is approximately 4 m. However, engineering 
judgment shows that the real buckling length is approximately 
8 m (Fig. 3b). The latter buckling length leads to a much 
smaller buckling load. Therefore, blindly applying the code 
rules on buckling lengths – as a computer program does – can 
lead to a considerable overestimation of the buckling load. 

 
 

 
Figure 1. Buckling curves according to the Eurocode 

 

 
Figure 2. Buckling curve according to the AISC LRFD 
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Figure 3. Automatically calculated buckling length (a) 

and the real buckling length (b) 
 
Another example is the cross brace shown in Figure 4. One 
diagonal member is compressed and the other is tensioned. The 
compressed member can buckle in the out-of-plane direction. 
The buckling length thus calculated is approximately 14 m. 
However, the tensioned diagonal member will restrain this 
buckling deformation. The real buckling length is approxima-
tely 7 m. The latter buckling length leads to a much larger 
buckling load, which can make the difference between a 
complicated lifting operation and a simple one.1 
 
Consequently, many member buckling length needs to be 
checked manually. In a typical jacket removal project approxi-
mately 2000 man-hours are spend on structural analysis. It is 
estimated that 5 to 10% of these man-hours are used for 
checking and correcting buckling lengths. This includes reruns 
made due to forgetting to adjust bucking lengths when design 
changes are processed. 
 
An alternative analysis method is available that does not 
require manual determination of buckling lengths. It has been 
developed by W.F. Chen and co-workers for the AISC LRFD 
code [2, 3]. In this method the stability checks are included in a 
geometrical nonlinear frame analysis. The buckling lengths are 
determined computationally instead of by using code equations. 
This has the advantage that it is very accurate in any situation 
and buckling lengths do not need to be checked by hand. In this 
paper it is shown that also the NORSOK buckling requirements 
can be rewritten to obtain a straight forward implementation for 
a nonlinear analysis. 
                                                           

1 The requirement that none of the members should buckle during lifting 
and transportation of a jacket is rather conservative. After all, in a statically 
indeterminate structure the buckling of a member does not need to cause 
collapse of the structure. A geometrical nonlinear analysis can show this, 
however, this issue is not considered in this paper. 

 
For many frame structures buckling is not the decisive failure 
mechanism. For example, in most unbraced building structures 
the second order displacements under serviceability loading are 
decisive. In many offshore structures fatigue is the decisive 
failure mechanism. On the other hand, buckling is very likely 
to be decisive when a slender frame structure has no 
serviceability limit state and no fatigue restrictions. Examples 
are lifting and transportation of an offshore jacket in a removal 
operation. 
 

 
Figure 4. Out−of−plane buckling lengths of a cross brace 

 

2     DERIVATION 
In the NORSOK standard N-004, Eq. 6.5 the slenderness of 
tubular members is defined as 
 

cl

E
λ =

f
f

               (1) 

 
where fcl is the stress at which the tube wall yields or buckles 
and fE is the theoretical mean stress at which the whole tubular 
member buckles if there would not be any imperfection. Stress 
fcl can be determined from Eq. 6.6 to 6.8 in the NORSOK 
standard (See appendix). In hand calculations fE is determined 
using the buckling length or the effective length factor, which 
strongly relies on sound engineering judgment. In computer 
calculations fE is determined just as it is defined. For this a 
geometrical nonlinear computation is performed of the whole 
frame structure. 
 
The effect of member imperfections is described by NORSOK 
equations 6.3 and 6.4. 
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where fy is the material yield stress and fc is the mean stress at 
which a tubular member buckles. 
 
If member imperfections are included in a nonlinear computa-
tion a member buckles at a stress of fc instead of fE. The 
theoretical buckling stress fE is linear in the bending stiffness, 
therefore, a computer can include imperfections by reducing 
the stiffness by a factor 
 

ξ =  fc / fE.               (4) 
 

Note that fc can be computed from fE using Eq. (1) to (3). 
Unfortunately, fE is not known before the nonlinear 
computation is finished. At first sight this seems an 
insurmountable problem but the solution is quite simple. 
During a nonlinear analysis the load is applied in increments 
and equilibrium is found in iterations. In each increment and 
iteration the stiffness reduction factor ξ is applied. In 
computing ξ, instead of fE the actual member stress f over ξ is 
used. This is clearly incorrect, however, when the loading is 
such that a member is buckling, f = fc and f / ξ = fE. Therefore, 
at the moment of buckling the correct reduction factor is 
applied, which takes imperfections correctly into account. 
 
Substiting Eq. (1) (2) and (3) in (4), applying a material factor 
γM to fc (NORSOK Eq. 6.2) and replacing fE by f / ξ gives 
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Figure 5. Bending stiffness reduction factor ξ as a 

function of the member stress  f 

where f is computed as the member axial force N over the 
member cross-section area A (Fig. 5). 
 

f = –N / A.               (6) 
 
Another way of explaining Eq. (5) is by an experiment of 
thought. Suppose that a buckling test is performed on a simply 
supported column. The column length l and the buckling load 
Nc are measured. The bending stiffness EI can be calculated 
from Nc = π2EI / l2. The test is repeated for many columns with 
the same cross-section but different lengths. Subsequently, a 
graph is made with Nc on the horizontal axis and EI on the 
vertical axis. Clearly, this graph shows the bending stiffness as 
a function of the buckling load. It also shows the bending 
stiffness as a function of any normal force N, because it does 
not matter that the bending stiffness has been obtained from 
observing buckling and the buckling equation. In this way 
Figure 5 would have been obtained too. 
 
From the explanation above it follows that Eq. (5) can also be 
used to include imperfections in the computation of second 
order displacements. This has not been used in the paper at 
hand but in many situations it is a very useful property. Clearly, 
for the serviceability limit state Mγ = 1. 
 

3 IMPLEMENTATION 
A geometrical nonlinear computation can use either the secant 
algorithm or the Newton-Raphson algorithm (Fig. 6 and 7). In 
the secant algorithm the following member stiffness matrix is 
used [4]. 
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where EI is the member bending stiffness and l is the member 
length. The matrix depends on the member normal force N. For 
compression N is smaller than zero and the matrix elements are 
computed with 
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For tension N is larger than zero and the matrix elements are 
computed with 
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Figure 8 shows the member node forces and node displace-
ments. 
Imperfections are included by multiplying the member stiffness 
matrix by ξ as shown in Eq. 7 and 8. Note that ξ has different 
values for different members. 
In the Newton-Raphson algorithm the factor ξ needs to be 
applied to the member contribution of the internal force vector. 
It also needs to be applied to the member tangent stiffness 
matrices. However, in this paper the secant algorithm has been 
applied. 
 
 

 
Figure 6. Equilibrium iterations of the secant algorithm 

 
 

 
Figure 7. Equilibrium iterations of the 

Newton−Rahpson algorithm 
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Figure 8. Frame member node forces, node moments, 
node displacements and node rotations 

 

4     ANALYSIS EXAMPLES 
Figure 9 shows a frame structure, which seems very usual at 
first sight. However, this example has an unusually large 
sensitivity to imperfections [5]. All members have a bending 
stiffness EI = 127×1012 Nmm2. The response has been analyzed 
by a linear and a nonlinear frame program. 
The horizontal displacement is recorded at joint D. The first 
order displacement is 11.3 mm. The second order displacement 
without imperfections is 11.4 mm, which is 1% larger. The 
second order displacement including imperfections (bending 
stiffness reduced by factor ξ) is 14.1 mm which is 25% larger 
than the first order displacement. 
The elastic buckling load without imperfections is 75000 kN.  
The elastic buckling load including imperfections is 6450 kN, 
which is a factor 12 smaller. The second order displacements 
can also be obtained by the commonly used formula u2 = u1 n / 
(n – 1) where n = Nc / N. For performing this hand calculation it 
is important to estimate the buckling loads correctly. The 
plastic collapse load is just 1800 kN, therefore, buckling is not 
decisive for the ultimate limit state of this frame. This example 
shows the general importance of using a reduced bending 
stiffness in nonlinear structural analyses. 
 

             

 
Figure 9. Frame structure with a remarkeble influence of 

 the reduced bending stiffness 
 

0 displacement

force

internal force

0 displacement

force

120 kN

1200 kN

A

B C

D

E

deformation

3658 mm

2438 mm

18291829

3048



 5 Copyright © 2011 by ASME 

Lifting and transportation of a typical large jacket in a removal 
operation has been analyzed (Fig. 10). During lifting the jacket 
is loaded by self weight only. During transportation the jacket 
is loaded by self weight and inertia forces due to sea motions. A 
structural analysis program has been used to perform the linear 
analyses and the NORSOK buckling checks with manually 
updated buckling lengths. It is noted that these checks are a 
post processing operation to the linear analysis. It was shown 
that each member fulfils the NORSOK requirements. 
 
A structural analysis program has been used for nonlinear 
analysis of the jacked loaded by one of the transportation loads. 
This loading has been selected because the linear analysis 
showed large compressive forces in members that are sensitive 
to buckling failure. The load has been applied in one increment 
and several iterations were necessary to find equilibrium. After 
every iteration the member stiffnesses were manually reduced 
by factor ξ to account for imperfections. None of the members 
buckled in the nonlinear analyses. 
 
It is noted that software developers can simply implement the 
reduction factor ξ. This would make the duration of the 
nonlinear analysis just a few seconds and without any need for 
manual intervention. 
 
            

 
Figure 10. Transportation of a typical eigth leg jacket2 

 

                                                           
2 The computation results are as expected, nevertheless, details of the structural 
model are not shown to respect confidentiality of the contractor, owner and 
software developer. 

5     CONCLUSIONS 
The considered alternative method can replace the traditional 
method of buckling checking. In the alternative method the 
NORSOK buckling requirements are correctly applied too. The 
important difference between the methods is that in the 
alternative method the buckling lengths are determined 
computationally without interpretations or approximations. The 
advantages and disadvantages of the alternative method 
compared to the traditional method are summarized below. 
 
Advantages 

- No manual calculation of buckling lengths needed 
- According the NORSOK code of practice 
- Easy to implement in frame analysis software 
- Both member buckling and structural buckling included 
- More accurate 

 
Disadvantages 

- Nonlinear analysis necessary 
- Software developers need to implement Eq. (5) 
- Some training of the analysis engineer is needed 
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APPENDIX 
NORSOK Eq. 6.6 to 6.8 are related to this paper. For 
completeness they are provided in this appendix 
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where 
 

clef is the characteristic elastic local buckling strength 

eC is the critical elastic buckling coefficient = 0.3 
D is the outside diameter 
t is the wall thickness 
 


